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Density of states of tunnel-coupled 2D electron layers
in strong magnetic fields

0. E. Raichev
Institute of Semiconductor Physics, NAS Ukraine, Pr. Nauki 45, Kiev, Ukraine

Abstract. The density of states for a pair of disordered tunnel-coupled 2D electron layers in the
quantum Hall regime is calculated. The interplay between the scattering-induced broadening of
the Landau levels and tunnel-induced hybridization of the electron states is demonstrated. The
conditions for the tunneling gap, when a single Landau level splits in two levels, are expressed
through the parameters of the system. It is shown that even a symmetrical double-layer system
in a strong magnetic field acquires a substantial dipole moment due to interlayer asymmetry of
the disorder.

Introduction

Electronic properties of double-layer two-dimensional (2D) electron systems formed in
double quantum wells [1] (DQW's) or in wide wells [2] have attracted much attention
in past years. In particular, it is found that the tunnel coupling of electron states in
these systems is important for interpretation of the quantum Hall effect data [2-4], since
it opens the tunneling gap separating the symmetric and antisymmetric (with respect
to the layer index) states. Despite the intensive studies, the influence of the tunnel
coupling on the properties of double-layer systems is not fully disclosed. Theoretical
studies of the equilibrium properties and in-plane transport coefficients of the DQW's
with a pronounced tunnel coupling have been done for the case of weak magnetic fields
only

In this paper we study the density of states of the electron gas in tunnel-coupled
DQW's in a strong magnetic field taking into account the Landau level broadening due to
elastic scattering of the electrons. Apart from the density of states, we calculate another
important function, the interlayer distribution density, which describes the difference
between the concentrations in the wells (in the same way as the density of states
describes the total concentration). Both these functions can be used for determination
of all the equilibrium quantities (for example, specific heat, magnetic susceptibility and
capacitance) characterizing the double-layer system.

1 Basic outline of the calculations

The calculations described below are done by two methods. The first is the self-
consistent Born approximation (SCBA), see [5]. The SCBA gives a reasonable descrip-
tion of the density of states of 2D systems for any kind of elastic disorder, but it is not
an exact method. For this reason, we also apply an exact method, based upon the path
integral formalism, in the "adiabatic" approximation, when a characteristic length of the
inhomogeneities exceeds the magnetic length.
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Consider a double-layer system in the magnetic field H applied perpendicular to the
layers. In the basis of left (I-) and right (r-) layer orbitals, the Hamiltonian of the
system is

1 (+ e A1
2 5x C

where A = [H x x]/2 is the vector-potential of the magnetic field, E, is the Zeeman
energy (s is the spin index), h is the potential energy matrix of the system, and V(x)
is the matrix of the disorder potential (we consider the elastic disorder, which, besides,
has no influence on the electron spin). The potential energy matrix is given as h =
(A/2)-. + T4 , where 6-i are the Pauli matrices, A is the splitting energy in the
absence of tunnel coupling, and T is the tunneling matrix element determining the
minimum splitting energy between the symmetric and antisymmetric states. The matrix
of the disorder potential is V(x) = PIVi(x) + PrVr(x), where /5l = (1 + & )/2 and
Pr = (1 - 6-.)/2 are the projection matrices. The density of electron states N(e) and
the interlayer distribution density N, (E) are expressed through the retarded matrix Green
function i. (x, x', s) of the Hamiltonian (1):

_I- Z m Try )KG&(x xs)) (2)
=(,F -7 S

where Tr means the matrix trace, and the statistical averaging (...) is carried over all
possible configurations of the random potentials V(x) and Vr(x).

A. Within the SCBA, the averaged Green function of the Hamiltonian (1) is

Ge(n, s) = [E - E- - -e(n, s)]1 (3)

We use the Landau level representation, n is the Landau level number, e, = t w (n +
1/2), w,. is the cyclotron frequency, and tF (n, s) is the self-energy matrix. The last is
given by the following equation

-e (n, s) = E (JJ' (n, n')Piae (n', s)]ig, (4)
n,,j,j,

where j = 1, r is the layer index. The scattering probabilities (by (n, n') are expressed
through the Fourier transforms of the random potential correlators W, (Jx - x' ) =

i(Xx) V (x')).
After a substitution of the Green function (3) into Eq.(4), we obtain a set of equa-

tions needed for determination of the self-energy We assume the case of very strong
magnetic fields, when the cyclotron energy is large in comparison with all other ener-
gies. This allows us to consider each Landau level separately (n' = n in Eq.(4)). In
this approximation, Eqs.(3) and (4) give a set of nonlinear algebraic equations, which
are to be solved numerically, giving, thereafter, N(E) and N,(e).

B. The path-integral representation [6] of the retarded Green function is

X, X, S) - dtexp (-(E-h)t) j D[xT]
N (x, x'T (- L ) - x = } x

x exp -} dT [Ls(x,-, i,-) -V(x,](5
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Fig 1. (a) Density of states N(c') (solid) and interlayer distribution density N, (c') (dash) in units
of 1/rraH2/- at pt = 0.6, -y = 0.3, A = 0, and T = VT (b) The same for A = and
T = 2.5N/T. The SCBA results are shown by thin lines.

where N is the normalization factor, and L, (x, i) = mi2 /2+eH[x ×i] /2c-E, is the free-
particle Lagrangian. The direct statistical averaging of the matrix exponential expression
in Eq.(5) is impossible, in contrast to scalar exponentials [6]. For this reason, some rigid
approximations are done from the very beginning. We assume that the characteristic
length of the inhomogeneities considerably exceeds the electronic wavelength which, in
a strong magnetic field, is equal to the magnetic length aH. Then, we can replace V(xT)
by V, and the path integral gives

1
N(E') 2  (6(E' - Vo - VT) + 6(E' - Vo + V)), (6)

A 1 2 /A/2 + V, v0 - vT) - 6(E' - v0 + vT)] (7)Nz (&') = 2ra 2 KA/+Vzs7v[)/v )]e(7

where E' = - E, - E, is the energy counted from the center of each spin-split Landau
level, Vo = (Vi+,)/2, V = (Vi-Vr)/2, and VT = VT + (V + A/2) 2. The averaging
in Eqs.(6) and (7) is to be done with use of a two-dimensional Gaussian distribution
function [6], which is expressed through the correlators Wjj, (0).

2 Results and discussion

Below we introduce the values 4D = [4uj(n, n) + 4brr(n, n)]/2, bt = [DII(n, n) -

'I'r(n, n)]/[4v,(n, n) + brr(n, n)] and -y = 4bir(n, n)/. The first characterizes av-
eraged (over the layer index) scattering within n-th Landau level, while the second and
the third characterize the asymmetry and interlayer correlation of the disorder potential,
respectively. In the case of smooth disorder, the scattering probabilities %j, (n, n') are
given as (jj,(n, n') = 6n,, Wjj, (0), and one can express 4b, bt and -y directly through
W11(0), Wrr(0) and Wir(O). This allows to make a comparison between the results of
the SCBA and path-integral method.

Fig.1 (a) shows energy dependence of N(E') and N,(E') calculated by both methods
in symmetrical conditions, A = 0. At a finite tunnel coupling, the Landau level formed
by two coupled states (the "coupled Landau level") begins to split. As the coupling
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increases (larger T), a complete splitting occurs and the tunneling gap opens up, see
Fig.1 (b). The opening of the gap leads to an additional quantized Hall plateau when
the Fermi level stays in the gap. In the SCBA, the density of states has sharp edges, and
one can write a strict condition for the tunneling gap. At A = 0 the gap exists when

T~2 > 4(1 +-y-A) 2/(1 -A), A= it /(1- 1 -t 2)/(1+ 1l-i 2 ). (8)

At A zA 0, a similar analytical expression can be found for symmetrical disorder (P =

0): T 2 > [4 - (A/4)2](1 + .Y)2. Of course, these expressions should be applied in
a qualitative sense only, because the edges of the density of states cannot be as sharp
as the SCBA predicts. However, they give a correct information about the influence of
the disorder parameters on the tunnel splitting of the Landau levels (this is justified by
the path-integral calculations). In particular, Eq.(8) shows that the interlayer correlation
(-y) suppresses the gap, while the interlayer asymmetry of the disorder potential (pt)
favors the gap.

The interlayer distribution density N. (E') at A = 0 is a symmetric function with
respect to the center of the coupled Landau level. It is not equal to zero because of the
disorder asymmetry which means that the double-layer electron has a dipole moment
even at A = 0. At A zA 0, N(E') exists both for p = 0 and pt zA 0. Nevertheless,
the dipole moment, which is proportional to the energy integral of N (E'), goes to zero
when the coupled Landau level is fully occupied.

In conclusion, we have calculated the density of states and interlayer distribution
density for a pair of tunnel-coupled 2D layers in a strong magnetic field. The Landau
level broadening is described with use of the self-consistent Born approximation and the
path-integral approach for smooth Gaussian disorder. A possible interlayer asymmetry
of the disorder potential is taken into account. The conditions for the tunneling gap are
expressed through the parameters of the system.
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